Fast robust MEG source localization using MLPs
نویسندگان
چکیده
Source localization from MEG data in real time requires algorithms which are robust, fully automatic, and very fast. We present two neural network systems which are able to localize a single dipole to reasonable accuracy within a fraction of a millisecond, even when the signals are contaminated by considerable noise. The first network is a multilayer perceptron (MLP) which takes the sensor measurements as inputs, uses two hidden layers, and outputs source location in Cartesian coordinates. After training with random dipolar sources contaminated by real noise, localization of a single dipole could be performed within 300 microseconds on an 800 Mhz Athlon workstation, with an average localization error of 1.15 cm. To improve the accuracy to 0.28 cm, one can apply a few iterations of conventional Levenberg-Marquardt (LM) minimization using the MLP output as the initial guess. The combined method is about twenty times faster than multistart LM localization with comparable accuracy. In a second network with only one hidden layer, the outputs were the amplitudes of 193 evenly distributed Gaussian functions holding a soft distributed representation of the dipole location. We trained this network on dipolar sources with real noise, and externally converted the network’s output into an explicit Cartesian coordinate representation of the dipole location. This new network had an improved localization accuracy of 0.87 cm, while localization time was lengthened to about 800 microseconds.
منابع مشابه
Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise.
Iterative gradient methods such as Levenberg-Marquardt (LM) are in widespread use for source localization from electroencephalographic (EEG) and magnetoencephalographic (MEG) signals. Unfortunately, LM depends sensitively on the initial guess, necessitating repeated runs. This, combined with LM's high per-step cost, makes its computational burden quite high. To reduce this burden, we trained a ...
متن کاملFast robust subject-independent magnetoencephalographic source localization using an artificial neural network.
We describe a system that localizes a single dipole to reasonable accuracy from noisy magnetoencephalographic (MEG) measurements in real time. At its core is a multilayer perceptron (MLP) trained to map sensor signals and head position to dipole location. Including head position overcomes the previous need to retrain the MLP for each subject and session. The training dataset was generated by ma...
متن کاملRobust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity
Independent Component Analysis (ICA) is a frequently used preprocessing step in source localization of MEG and EEG data. By decomposing the measured data into maximally independent components (ICs), estimates of the time course and the topographies of neural sources are obtained. In this paper, we show that when using estimated source topographies for localization, correlations between neural s...
متن کاملImproving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences
Modern neuroimaging techniques enable non-invasive observation of ongoing neural processing, with magnetoencephalography (MEG) in particular providing direct measurement of neural activity with millisecond time resolution. However, accurately mapping measured MEG sensor readings onto the underlying source neural structures remains an active area of research. This so-called "inverse problem" is ...
متن کاملMEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images
The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were ...
متن کامل